Matlab on a Supercomputer

Shelley L. Knuth
Research Computing
April 9, 2015
Outline

• Description of Matlab and supercomputing
• Interactive Matlab jobs
• Non-interactive Matlab jobs
• Parallel Computing

Slides available at
http://researchcomputing.github.io/meetup_spring_2015/
What Is Matlab?

• A high performance tool for technical computing
 • Integrates computation, visualization, and programming
 • Analyze data, develop algorithms, create applications
 www.mathworks.com
• Uses many specialized toolboxes to make our lives easier
• Used by many in the sciences, engineering, math
 • Academia and industry
What Is a Supercomputer?

• One large computer made up of many smaller computers and processors
• Each different computer is called a node
• Each node has processors/cores
 • Carry out the instructions of the computer
• With a supercomputer, all these different computers talk to each other through a communications network
Janus Supercomputer

- 1368 nodes, 16,000+ cores
- Resource available to all of CU
- RC environment has login, compile, and compute nodes

Login nodes
- Virtual machine
- Presents a development environment
- Where you land when you log in
- Used for:
 - Editing scripts
 - Job submission
Janus Supercomputer

• Compile nodes
 • Used for:
 • Compiling/installing software
 • Compiling large programs
 • Nodes on Janus that have the same setup as computational nodes
 • Hardware and software

• Compute nodes
 • Where jobs are run
 • Jobs are scheduled to run on the compute nodes via a scheduler
Setting up to run Matlab

- Different than running Matlab on your local machine
- Must login, set environment to run

- Login:

  ```
  ssh -X knuths@login.rc.colorado.edu
  Enter password: 4-digit PIN + OTP number
  ```

- Setting environment up to run Matlab:

  ```
  module load matlab
  ```
How to Run Matlab

- Once you have your environment set up to run Matlab, there are two main ways you can run Matlab
 - Interactively
 - In the background
- We will examine both methods, and their pros and cons
Interactive Matlab

• “Interactive” means working with software where you input commands and the software gives a response
• One common mistake people make is to login, be on a login node, and then type “matlab”
 • Similar to how they would run it on their laptop
 • This is a great example of **WHAT NOT TO DO**
• Login nodes are a shared resource
• Running software that requires a lot of resources can impact other’s usability of the node
Batch job submission

- Matlab can also be run interactively through a batch job
 - Achieves the same effect, more efficient
- Batch jobs are scheduled to run on a supercomputer once the required resources are available and after it is your turn in the queue
- RC uses SLURM to submit/schedule jobs
- Common commands:
 - `sbatch`
 - `sinteractive`
 - `salloc`
Interactive Batch Jobs - Matlab

• To submit a batch job to run Matlab interactively:
 • Request CPU time on the compute nodes
 • Wait for this the resources to become available
 • Open Matlab
 • Do your thing!

• Interactive batch jobs are mainly used for
 • Debugging
 • Short job runs
Submission – Interactive Batch Jobs

• To submit an interactive batch job on Janus, do the following:

 module load matlab (described earlier)
 module load slurm

 Then to request compute time, either use:
 salloc
 sinteractive
Salloc vs. Sinteractive

- Both are SLURM commands
- `salloc`
 - Use this if you don’t need X11 forwarding
 - If you don’t need the GUI
- `sinteractive`
 - Use this if you do need X11 forwarding

`salloc --qos=janus-debug`
`sinteractive --qos=janus-debug`
Length – Interactive Batch Jobs

- NEVER run for a long time
- Your job will start when resources become available
- This could be at 2 am
- Want job to start asap
- Ask for as few resources as possible
 - Small wall-time
- Good for the janus-debug queue
 - Keeps you to under 1 hour
Interactive Batch Jobs

• Once `salloc` or `sinteractive` runs

```bash
salloc --qos=janus-debug
```

• And resources become available you are granted a job allocation on a node

```
salloc: Granted job allocation 602576  (output)
```

• Once this comes on the screen your compute allocation is being used
 • If you type `hostname` you will be told which node you are on

```
bash-4.1$ hostname
node0211
```
Interactive Matlab

• Now you can run Matlab

```
matlab
```

• If you use salloc you will get Matlab without the GUI
• If you use sinteractive you will get Matlab with the GUI
• Let’s try it!

• One thing to remember – you are burning compute time
• If finish earlier than time asked for type `exit`
Non-Interactive Batch Jobs

• Submit job that will be executed when resources are available
• Create a text file containing information about the job
• Or submit on the command line
• Submit the job file to a queue
 `sbatch`
Batch Job example

- **Contents of scripts**
 - Matlab_tutorial_general.sh
 - Wrapper script loads the slurm commands
 - Changes to the appropriate directory
 - Calls the matlab .m files
 - Matlab_tutorial_general_code.m

- **Run matlab program as a batch job**
 - sbatch matlab_tutorial_general_general.sh

- **Check job status:**
 - squeue -q janus-debug
 - cat SERIAL.out
Parallel Processing

- In parallel processing we use several CPUs to solve one problem
- One node with several cores
- Several nodes with many cores
- Embarrassingly parallel

Source: https://computing.llnl.gov/tutorials/parallel_comp/
Parallel Computing Toolbox (PCT)

- Additional toolbox as part of Matlab
- Perform parallel computations on multicore computers, GPUs, and computer clusters
- Allows you to parallelize Matlab code without MPI programming
- Many Matlab functions work in concert with the PCT
- Simple to utilize with just the use of certain commands
Parallel and Not Parallel

Not Parallel:
for i=1:10
 x=x(i)+1;
end

Parallel:
matlabpool open 3
parfor i=1:10
 x=x(i)+1;
end
matlabpool close
Running Matlab in Parallel

- **Workers**: copies of the original client created to assist in computation
Running Matlab in Parallel

- On Janus at CU can run up to 12 workers on one node
 - Used to be able to only run one Matlab job at a time
 - Now can run as many as you want
 - Can also run as many workers on the high memory nodes
parfor

- Easy to use
- Allows parallelism in terms of loops
- When client reaches a parfor loop iterations of loop are automatically divided up among workers
- Parfor requires results be completely independent
- Cannot determine how loops are divided
Running Matlab in Parallel On Lots of Cores

• Typically see a significant speed up when using `parfor` vs. when not
 • If code is parallelizable
• However, this might not always be the case
• Might spend more time in overhead
 • If code isn’t parallelizable
 • If code isn’t that complicated
Spmd Command

- Single process, multiple data
- The spmd command ensures more control
- Can parallelize much more than just loops
- Like a very simplified version of MPI
- More flexibility than parfor
- However, need to know what you’re doing
Distributed Computing Toolbox

- PCT allows you to run programs in parallel across many processors
- DCT allows you to run across nodes
 - Allows you to run easily on clusters
 - Supports resource managers
 - Not an option for Janus
Questions?

shelley.knuth@colorado.edu